4.7 Article

Dual-mode surface plasmon resonance sensor chip using a grating 3D-printed prism

期刊

ANALYTICA CHIMICA ACTA
卷 1147, 期 -, 页码 23-29

出版社

ELSEVIER
DOI: 10.1016/j.aca.2020.12.027

关键词

Surface plasmon resonance; Polymeric prism; Grating; 3D printing; Soft lithography

资金

  1. JSPS KAKENHI [JP20H02601A, JP20K21140]

向作者/读者索取更多资源

A method for fabricating a grating prism surface plasmon resonance (SPR) sensor chip was developed, which enables wavelength tuning of SPR excitation by creating a grating pattern on the prism surface, resulting in observation of dual-mode SPR excitation phenomenon.
The method for fabricating a grating prism surface plasmon resonance (SPR) sensor chip was developed. The grating prism was 3D-printed by a stereolithography 3D printer and subsequently created a grating pattern by soft lithography. A gold film was thermally evaporated on the grating prism. Moreover, a liquid cell was 3D-printed and assembled into a gold-coated grating prism. To make the sensor chip compact and practical, a compatible prism holder was 3D-printed by a fused deposition model 3D printer. The SPR sensor chip was mounted on the rotation stage and the SPR spectrum was recorded by spectrometer. The SPR excitation of the sensor chip can be extended to the near-infrared region by creating a grating pattern on the prism surface. A gold-coated grating prism exhibited dual modes of SPR excitations, namely, prism-coupling SPR (PC-SPR) and grating-coupling SPR (GC-SPR). The dual-mode SPR excitation was observed at the incident angles of 45 degrees-80 degrees. When the incident angle increased, the SPR excitation of the PC-SPR mode exhibited a blue shift in the wavelength region of 480-690 nm, whereas the GC-SPR mode exhibited a red shift in the wavelength region of 670-770 nm. The surface plasmon (SP) dispersion obtained from the dual-mode SPR configuration confirmed observable PC-SPR (which corresponded to + SP0 of the gold-resin interface) and GC-SPR (which corresponded to -SP+1 of the gold-air interface), which could be excited from the developed substrate. The refractive index sensitivities of the PCSPR and GC-SPR modes were 2924.4 and 414.9 nm RIU-1, respectively. The SPR excitations of the sensor chip exhibited a simultaneous shift when the local refractive index of the materials adjacent to the gold-coated grating prism surface was changed, especially the material that had overlapping light absorption at the SPR excitation wavelength. Using this fabrication process, the prism is designed and then printed; moreover, the grating pattern on the prism surface can be employed to tune the SPR excitation wavelength of the sensor chip for the versatility and broad perspective of the optical sensing-based SPR. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据