4.8 Article

Quantitative Prediction of the Electro-Mechanical Response in Organic Crystals

期刊

ADVANCED MATERIALS
卷 33, 期 12, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202008049

关键词

charge mobility; electro‐ mechanical properties; flexible electronics; strain

资金

  1. Universita degli Studi di Salerno
  2. EPSRC
  3. EPSRC [EP/N021754/2, EP/N021754/1] Funding Source: UKRI

向作者/读者索取更多资源

This study presents a new methodology to accurately predict the effects of external deformation on the charge transport properties of organic semiconductors. By investigating three prototypical materials, it was found that there is an order of magnitude difference in the intrinsic electro-mechanical response among organic semiconductors.
Organic semiconductors' inherent flexibility makes them appealing for advanced applications such as wearable electronics, e-skins, or pressure sensors, and can even be used to enhance their intrinsic electronic properties. Unfortunately, these applications for organic materials are currently hindered by the lack of a quantitative understanding of the interplay between their electrical and mechanical properties. In this work, this gap is filled by presenting an accurate methodology able to predict quantitatively the effects of external deformation on the charge transport properties of any organic semiconductors. Three prototypical materials are investigated, showing that the experimental variation of charge carrier mobility with strain is fully reproduced, even in a wide range of deformations applied along different crystal axes. The results indicate that the intrinsic electro-mechanical response of the materials varies by orders of magnitude within the class of organic semiconductors, a difference rationalized observing that the mobility trend is primarily influenced by the transfer integrals' variation, rather than by a modification of the crystal phonons. In light of its robustness, accuracy, and low computational cost, this protocol represents an ideal tool to quantify the electro-mechanical response in new organic compounds, thus establishing a reliable route for a full exploitation of strain engineering in advanced technologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据