4.8 Review

Photodetectors of 2D Materials from Ultraviolet to Terahertz Waves

期刊

ADVANCED MATERIALS
卷 33, 期 15, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202008126

关键词

2D materials; electromagnetic induced wells; field‐ effect transistors; photodetectors; ultraviolet to terahertz wave

资金

  1. National Science Fund for Distinguished Young Scholars [61625505]
  2. Chinese Academy of Sciences [ZDBS-LY-JSC025]
  3. Sino-Russia International Joint Laboratory of Terahertz Materials and Devices [18590750500]
  4. Shanghai Municipal Science and Technology Major Project [2019SHZDZX01]

向作者/读者索取更多资源

2D materials are considered promising for photodetectors due to their unique properties, but limitations such as low quantum efficiency, noise, and slow response are caused by their thinness. Current research focuses on improving the performance of 2D material photodetectors, but balancing sensitivity and response speed remains challenging.
2D materials are considered to be the most promising materials for photodetectors due to their unique optical and electrical properties. Since the discovery of graphene, many photodetectors based on 2D materials have been reported. However, the low quantum efficiency, large noise, and slow response caused by the thinness of 2D materials limit their application in photodetectors. Here, recent progress on 2D material photodetectors is reviewed, covering the spectrum from ultraviolet to terahertz waves. First the interaction of 2D materials with light is analyzed in terms of optical physics. Then the present methods to improve the performance of 2D material photodetectors are summarized, such as defect engineering, p-n junctions and hybrid detectors, and the issue of serious overestimation of the performance in reported photodetectors based on 2D materials is discussed. Next, a comparison of 2D material photodetectors with traditional commercially available detectors shows that it is difficult to balance the current 2D material photodetectors with regard to having simultaneously both high sensitivity and fast response. Finally, a possible novel EIW mechanism is suggested to advance the performance of 2D material photodetectors in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据