4.7 Article

Characterization of ductile phase toughening mechanisms in a hot-rolled tungsten heavy alloy

期刊

ACTA MATERIALIA
卷 204, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2020.116523

关键词

Microstructure design; Heterogeneous interface; 3D characterization; In-situ; Mechanical behavior

资金

  1. Office of Fusion Energy Sciences, U.S. Department of Energy (DOE) [DE-AC05-76RL01830]
  2. DOE Basic Energy Science program (BES) [DE-FG02-06ER15786]
  3. NSF [ECCS 1542100, ECCS 2025151]

向作者/读者索取更多资源

Tungsten heavy alloys (WHAs) are seen as alternatives to polycrystalline tungsten for fusion reactor plasma facing components due to their balanced strength and ductility. A study on a 90W-7Ni-3Fe WHA alloy reveals that microcracking mainly occurs at tungsten grain boundaries, which are blunted and arrested by the ductile phase.
Tungsten heavy alloys (WHAs) are a type of ductile phase toughened alloy that are becoming increasingly interesting as an alternative to polycrystalline tungsten for fusion reactor plasma facing material components due to their balanced strength and ductility. To justify their use in the extremely harsh environment of a fusion reactor, understanding detailed microstructural features of WHAs associated with their mechanical property changes is necessary. A 90W-7Ni-3Fe WHA alloy has been chosen to investigate the effect of thermomechanical treatment and microstructural manipulation on the overall effectiveness of deformation accommodation in these bi-phase metallic composites. Both in-situ tensile testing and 3D microstructural analysis of the samples reveal a predominance of microcracking at tungsten grain boundaries that are blunted and arrested by the ductile phase, while there remains little to no instances of interfacial debonding. Thermomechanical treatment of this alloy is found to alter the spherical brittle phase domains into elongated plates, drastically reducing the ductile phase connectivity, and changing the nature of material deformation. Characterization of the ductile phase toughening mechanisms in these materials has provided deeper insight into the underlying physics governing material behavior in these alloys; revealing a surprising interfacial strength between the different phases. (c) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据