4.7 Article

Employing molecular dynamics to shed light on the microstructural origins of the Taylor-Quinney coefficient

期刊

ACTA MATERIALIA
卷 205, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2020.116511

关键词

conversion factor; cold work; thermoplasticity; heat generation; microstructure; high strain rate

资金

  1. Pazy foundation funds

向作者/读者索取更多资源

The Taylor-Quinney coefficient (TQC) represents the fraction of external work converted into heat during plastic deformation, with values ranging from 0.1 to 1 depending on strain and strain rate. Molecular dynamics simulations showed different energy storage mechanisms in single crystal and nanograined samples, emphasizing the role of dislocations and grain boundaries. Grain boundary evolution may play a crucial role in energy storage in polycrystalline materials at experimental strain rates.
The Taylor-Quinney coefficient (TQC) or the cold-work conversion factor is the fraction of external work that is converted into heat during the plastic deformation of a material. Since it was first proposed almost a century ago, its value was measured experimentally and was found to span over a wide range of values between 0.1 and 1, and it is argued to depend on strain and strain rate. Despite, only little is known on how the microstructure corresponds to the value of TQC, and in particular how dislocations and grain boundaries correspond to energy storage during plastic deformation. We employ molecular dynamics simulations to study the work-to-heat conversion during plastic deformation in single crystal and nanograined samples of aluminum, copper, iron, and tantalum at extremely high strain rates. We found that if dislocation glide in the drag-controlled regime is the only deformation mechanism of plastic deformation, all external work is converted into heat as in the case of single crystals with dislocation dipoles. On the other hand, in nanograined samples we found that some energy is stored in- or released from the crystal as a result of an evolution in the morphology and distribution of grain boundaries. We also emphasize the important distinction between the integral and differential measurements of TQC, showing that the differential measure can become even greater than 1 if the strain increment results in annealing of the defects from the microstructure. Based on the atomistic observations, we propose that grain boundary evolution mechanisms can be responsible for energy storage in polycrystalline material at experimental strain rates. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据