4.7 Article

Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: example of an AlxCoCrFeNi high-entropy alloy

期刊

ACTA MATERIALIA
卷 204, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2020.116505

关键词

Additive manufacturing; Hot tearing; Segregation; High-entropy alloy; Thermodynamics

资金

  1. Medium-Sized Centre funding scheme - National Research Foundation, Prime Minister's Office, Singapore
  2. French METSA network (FR3507)
  3. German Ministry of Education and Research [03XP02154]

向作者/读者索取更多资源

One major hindrance in alloy design for additive manufacturing (AM) is hot tearing, and a new approach of segregation engineering can effectively prevent hot tearing and achieve systematic additive manufacturing of alloys.
One major hindrance that alloy design for additive manufacturing (AM) faces nowadays is hot tearing. Contrary to the previous works which either try to reduce solidification range or introduce grain refinement, the current work presents a new approach of employing segregation engineering to alter the residual stress states at the interdendritic and grain boundary regions and consequently prevent hot tearing. Here, in situ Al alloying is introduced into an existing hot-cracking susceptible high-entropy alloy CoCrFeNi. It is found that within a certain range of compositions, such as Al0.5CoCrFeNi, the hot crack density was drastically decreased. During the solidification of this specific alloy composition, Al is firstly ejected from the primary dendritic face-centred cubic (FCC) phase and segregates into the interdendritic regions. Spinodal decomposition then occurs in these Al-enriched regions to form the ordered B2 NiAl and disordered body-centred cubic (BCC) Cr phases. Due to the higher molar volume and lower homologous temperatures of these B2/BCC phases, the inherent residual strain is accommodated and transformed from a maximum 0.006 tensile strain in CoCrFeNi to a compressive strain of similar to 0.001 in Al0.5CoCrFeNi. It is believed that this grain boundary segregation engineering method could provide a new pathway to systematically counteract the hot tearing problem in additive manufacturing of metals and alloys, using available thermodynamic and kinetic database information. (c) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据