4.6 Article Proceedings Paper

Degradation Mechanisms of C6/LiFePO4 Batteries: Experimental Analyses of Cycling-induced Aging

期刊

ELECTROCHIMICA ACTA
卷 210, 期 -, 页码 445-455

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2016.05.091

关键词

Li-ion batteries; Solid-Electrolyte-Interphase; Capacity loss; Material decay; Electromotive Force

向作者/读者索取更多资源

Electromotive force (EMF) voltage curves are regularly determined to facilitate in-depth understanding of aging mechanisms of C-6/LiFePO4 batteries during cycling. The irreversible capacity losses under various cycling conditions and temperatures are accurately obtained from the extrapolated EMF curves and are found to increase with cycle number and time. A new mathematical extrapolation method is proposed to distinguish between calendar ageing and cycling-induced ageing. The capacity losses due to calendar aging are obtained by extrapolating the total irreversible capacity losses to zero cycle number. It is found that calendar ageing increases logarithmically in time. On the other hand, cycling-induced ageing is accurately determined by extrapolating the capacity losses to zero time. In this case the capacity losses are found to increase linearly with cycle number. It is furthermore found that iron dissolution from the cathode at 60 degrees C and the subsequent deposition onto the anode enhances significantly the SEI formation on the graphite electrode and, consequently, battery ageing. Interestingly, the graphite electrode decay has been quantified in much more detail, by analyzing the dV(EMF)/dQ curves. The analyses show that the electrode decay can be related to both the structural deterioration and the inter-layer surface blockage of the graphite electrode, as has also been experimentally confirmed by Raman and XPS spectroscopy. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据