4.8 Article

Delivery of toll-like receptor 3 ligand poly(I:C) to the liver by calcium phosphate nanoparticles conjugated with an F4/80 antibody exerts an anti-hepatitis B virus effect in a mouse model

期刊

ACTA BIOMATERIALIA
卷 133, 期 -, 页码 297-307

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2021.01.045

关键词

Nanoparticles; TLR3 ligands; F4/80; Hepatitis B virus

资金

  1. National Natural Science Foundation of China [81672022, 81461130019]
  2. Deutsche Forschungsgemeinschaft (DFG) [SFB/Transregio 60]
  3. National Major Science and Technology Project for Infectious Diseases of China [2012ZX10004503, 2013ZX10002001-001-006]
  4. Tianqing Liver Disease Research Fund of China [TQGB20190085]

向作者/读者索取更多资源

Nanoparticles carrying poly(I:C) conjugated with an F4/80 antibody showed enhanced liver targeting and significantly reduced HBV levels in mice, suggesting a promising alternative for future anti-HBV treatment.
Hepatitis B virus (HBV) is a global health issue, but currently available anti-HBV drugs have limited success. Previously, introduction of the Toll-like receptor (TLR)-3 ligand poly(I:C) to the liver via hydrodynamic injection (HI) was shown to effectively suppress HBV replication in a chronic HBV replication mouse model. However, this method cannot be applied in human beings. To improve the liver targeting of poly(I:C) via intravenous injection, calcium phosphate nanoparticles (CPNs) carrying poly(I:C) with or without antibodies were constructed, and their anti-HBV effects were investigated. We found that significantly more anti-F4/80-conjugated and IgG2 alpha-conjugated nanoparticles were taken up in liver cells both in vivo and in vitro. In addition, these nanoparticles produced pronounced immunostimulatory effects in vitro in primary liver cells. Importantly, treatment with nanoparticles carrying poly(I:C) increased the production of intrahepatic cytokines and chemokines and enhanced T cell responses, significantly reducing HBsAg, HBeAg and HBV DNA levels in the mice. Compared to nonconjugated and isotype-antibody-conjugated nanoparticles, the anti-F4/80-conjugated nanoparticles demonstrated the strongest anti-HBV effects. In summary, nanoparticles carrying poly(I:C) conjugated with an F4/80 antibody promoted liver targeting, and they may represent a suitable alternative to HI for future anti-HBV treatment. Statement of significance HBV chronically infects approximately 250 million individuals worldwide but current anti-HBV drugs have limited success. Introduction of toll-like receptor 3 ligand poly(I:C) into liver by hydrodynamic injection has been proven to promote HBV clearance in mouse model. However, this technique is not clinically suitable for human patients. We have constructed calcium phosphate nanoparticles carrying poly(I:C) with specific antibody targeting liver nonparenchymal cells. The uptake into relevant liver cells and the anti-HBV effects were studied. After intravenous injection into mice, the uptake rate of anti-F4/80-conjugated nanoparticels was enhanced in liver, and these nanoparticles exert effective anti-HBV effects in vivo. This may provide important insight into future HBV immunotherapy based on nanoparticle-mediated drug delivery. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据