4.8 Article

A Multifunctional, Self-Healing, Self-Adhesive, and Conductive Sodium Alginate/Poly(vinyl alcohol) Composite Hydrogel as a Flexible Strain Sensor

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 13, 期 9, 页码 11344-11355

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c01343

关键词

conductive hydrogel; self-healing; self-adhesiveness; responsiveness; strain sensor

资金

  1. National Natural Science Foundation of China [21978180]

向作者/读者索取更多资源

In this study, multi-functional conductive composite hydrogels were successfully fabricated using a simple method, showing high stretchability and excellent self-healing properties, with responsiveness to pH and sugar. The hydrogel exhibited good conductive behavior under various conditions, with high sensitivity, making it suitable for use as a strain sensor to monitor human motion.
Hydrogel-based wearable devices have attracted tremendous interest due to their potential applications in electronic skins, soft robotics, and sensors. However, it is still a challenge for hydrogel-based wearable devices to be integrated with high conductivity, a self-healing ability, remoldability, self-adhesiveness, good mechanical strength and high stretchability, good biocompatibility, and stimulus-responsiveness. Herein, multi-functional conductive composite hydrogels were fabricated by a simple one-pot method based on poly(vinyl alcohol) (PVA), sodium alginate (SA), and tannic acid (TA) using borax as a cross-linker. The composite hydrogel network was built by borate ester bonds and hydrogen bonds. The obtained hydrogel exhibited pH- and sugar-responsiveness, high stretchability (780% strain), and fast self-healing performance with healing efficiency (HE) as high as 93.56% without any external stimulus. Additionally, the hydrogel displayed considerable conductive behavior and stable changes of resistance with high sensitivity (gauge factor (GF) = 15.98 at a strain of 780%). The hydrogel was further applied as a strain sensor for monitoring large and tiny human motions with durable stability. Significantly, the healed hydrogel also showed good sensing behavior. This work broadens the avenue for the design and preparation of biocompatible polymer-based hydrogels to promote the application of hydrogel sensors with comfortable wearing feel and high sensitivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据