4.8 Article

NiCo-Layered Double Hydroxide-Derived B-Doped CoP/Ni2P Hollow Nanoprisms as High-Efficiency Electrocatalysts for Hydrogen Evolution Reaction

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 13, 期 8, 页码 9932-9941

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c20294

关键词

synergistic effect; NiCo-LDH; NiCo2-B-P; hollow structure; hydrogen evolution reaction

资金

  1. National Natural Science Foundation of China [21676057]
  2. Fujian Key Laboratory of Advanced Manufacturing Technology of Special Chemicals

向作者/读者索取更多资源

The rational design and controllable synthesis of bimetallic compounds with a well-defined hollow nanoprism structure, derived from NiCo-layered double hydroxide nanosheets, exhibit excellent hydrogen evolution reaction (HER) activity and long-term stability in an alkaline solution. This study provides a new approach for the design of bimetallic alkaline HER catalysts.
Rational design and controllable synthesis of multiple metal components according to chemical composition and morphology are essential for obtaining desirable electrochemical performance for efficient hydrogen production because of the morphology and synergistic effects of different components. Herein, we report an approach to facilely fabricate bimetal compounds with a well-defined hollow nanoprism structure using a self-templated strategy to synthesize novel hierarchical NiCo-layered double hydroxide (NiCo-LDH) nanosheets as precursors followed by in situ phosphorization. Among the as-synthesized products of different mole ratios of Ni/Co, the NiCo2-B-P nanoprisms that integrate the advantages of a hollow structure, an optimal Ni-Co synergistic effect, and a unique B-doped CoP/Ni2P bimetallic phosphide derived from NiCo-LDH nanosheets exhibit excellent hydrogen evolution reaction (HER) activity in an alkaline solution at 10 mA cm(-2) with the lowest overpotential of 78 mV and long-term stability. This study may offer an appropriate structure and compositional design of bimetallic alkaline HER catalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据