4.8 Article

Supersonically Sprayed Washable, Wearable, Stretchable, Hydrophobic, and Antibacterial rGO/AgNW Fabric for Multifunctional Sensors and Supercapacitors

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 13, 期 8, 页码 10013-10025

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c21372

关键词

multifunctional conductive fabric; fabric supercapacitor; fabric heater; thermal and strain sensors; supersonic cold spraying

资金

  1. National Research Foundation of Korea (NRF) - Korea government (MSIT) [NRF-2020R1A5A1018153, NRF-2016M1A2A2936760]
  2. King Saud University, Riyadh, Saudi Arabia [RSP-2021/30]

向作者/读者索取更多资源

In this study, reduced graphene oxide (rGO) and silver nanowires (AgNWs) were supersonically sprayed onto a fabric to create a washable, stretchable, and wearable fabric with functionalities including temperature sensing, heating, supercapacitor capabilities, and antibacterial features. The multifunctional fabric can monitor external stimuli and reduce infection risks from airborne viruses.
Wearable electronic textiles are used in sensors, energy-harvesting devices, healthcare monitoring, human-machine interfaces, and soft robotics to acquire real-time big data for machine learning and artificial intelligence. Wearability is essential while collecting data from a human, who should be able to wear the device with sufficient comfort. In this study, reduced graphene oxide (rGO) and silver nanowires (AgNWs) were supersonically sprayed onto a fabric to ensure good adhesiveness, resulting in a washable, stretchable, and wearable fabric without affecting the performance of the designed features. This rGO/AgNW-decorated fabric can be used to monitor external stimuli such as strain and temperature. In addition, it is used as a heater and as a supercapacitor and features an antibacterial hydrophobic surface that minimizes potential infection from external airborne viruses or virus-containing droplets. Herein, the wearability, stretchability, washability, mechanical durability, temperature-sensing capability, heating ability, wettability, and antibacterial features of this metallized fabric are explored. This multifunctionality is achieved in a single fabric coated with rGO/AgNWs via supersonic spraying.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据