4.8 Article

A Three-in-one ZIFs-Derived CuCo(O)/GOx@PCNs Hybrid Cascade Nanozyme for Immunotherapy/Enhanced Starvation/Photothermal Therapy

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 13, 期 10, 页码 11683-11695

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c01006

关键词

ZIFs-derived nanozymes; starvation therapy; photothermal therapy; immunotherapy

资金

  1. National Natural Science Foundation of China [11804180]

向作者/读者索取更多资源

CuCo(O)/GOx@PCNs hybrid nanozyme was developed in this study, exhibiting functions of restoring the enzymatic activity of glucose oxidase, enhancing starvation therapy, and high photothermal conversion efficiency. It can provide oxygen, consume glucose, and convert light into heat, showing promising effects in primary tumor and metastatic tumor treatment.
Glucose oxidase (GOx) is regarded as an ideal endogenous natural enzyme for tumor starvation therapy and photothermal therapy (PTT) is a promising strategy for the ablation of primary tumor. In this work, Cu-doped cobalt oxide and porous carbon nanocomposites (CuCo(O)@PCNs) were synthesized from double-layered ZIF-8@ZIF-67 and GOx was loaded in the porous carbon to form a CuCo(O)/GOx@PCNs hybrid nanozyme. CuCo(O) was characterized as the Cu0.3Co2.7O4 phase through X-ray diffraction analysis and it can react with H2O2 to generate O-2 and alleviate tumor hypoxia, resulting in the recovered enzymatic activity of GOx and the enhanced starvation therapy. The porous nanocarbon can ablate the primary tumor because of its high photothermal conversion efficiency of 40.04%. The three-in-one functions of oxygen supply, glucose consumption, and photothermal conversion were realized in the ZIFs-derived CuCo(O)/GOx@PCNs nanozyme and the starvation therapy effect was improved by PTT and oxygen supplement. Furthermore, the inhibition effect of CuCo(O)/GOx@PCNs on metastatic tumor is similar to combined therapy of the nanozyme and the immune checkpoint-blocking antibody, alpha-PD-1. The related antitumor immune mechanism was studied through the analysis of immune-related proinflammatory cytokines and the activated T cells. This work may provide new ideas for the development and application of the ZIFs-derived hybrid nanozyme in tumor therapy and the CuCo(O)/GOx@PCNs nanozyme may be a promising alternative to immune checkpoint inhibitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据