4.6 Article

Enhancing ethanol oxidation rate at PtRu electro-catalysts using metal-oxide additives

期刊

ELECTROCHIMICA ACTA
卷 191, 期 -, 页码 183-191

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2016.01.085

关键词

Direct ethanol fuel cells; metal-oxide promoters; PtRu/C catalyst; ethanol electro-oxidation

资金

  1. CNPq (CNPq) [238319/2012-1]

向作者/读者索取更多资源

Metal oxides are investigated, as additives of a PtRu/C catalyst, for enhancing the electro-oxidation of ethanol in acidic solution. High surface area TiO2 and SnO2 additives are synthesized and physicochemically characterized. These oxides are added to PtRu/C during the catalytic ink preparation to obtain tri-metallic composite electrodes. These composite electro-catalysts are investigated for the ethanol electro-oxidation in half-cell configuration in comparison with additive-free PtRu/C and Pt/C catalysts. The PtRu-based composite catalyst containing SnO2 promoter shows a lower onset potential and larger current density for ethanol oxidation than the additive-free catalyst and that containing TiO2 promoter. The composite catalysts (PtRu/C + metal oxide) are also used in a direct ethanol fuel cell under practical operating conditions and assessed against the benchmark PtRu catalyst. An increase in performance is recorded with the composite tri-metallic electrodes. The analysis of electro-catalytic activity towards ethanol oxidation reaction and ethanolic residues coverage indicates an enhanced capability to activate ethanol chemisorption or a larger electroactive surface area, together with a faster intrinsic activity at lower overpotential, as the reasons for the improved performance with the use of metal oxide additives. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据