4.6 Article

High temperature stability study of carbon supported high surface area catalysts-Expanding the boundaries of ex-situ diagnostics

期刊

ELECTROCHIMICA ACTA
卷 211, 期 -, 页码 744-753

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2016.06.105

关键词

PEM fuel cells; Electrocatalyst stability; Ex-situ diagnostics; High temperature; Stability enhancement

资金

  1. IMPRS-SurMat doctoral program
  2. BMBF [Kz: 033RC1101A]
  3. MAXNET Energy

向作者/读者索取更多资源

The performance of proton-exchange membrane fuel cells (PEMFCs) is defined by the equally important parameters of the intrinsic activity and stability of the electrocatalysts. This work focuses on the stability of carbon supported high surface area oxygen reduction reaction catalysts at potentials and temperatures similar to the operating conditions of PEMFCs. The catalysts used for this investigation consist of Pt nanoparticles of the same particle size supported on two types of carbon support having different textural properties, i.e., Vulcan and Hollow Graphitic Spheres (HGS). A broad toolbox of characterization techniques is utilized at 60 degrees C in order to resolve the contribution of the different degradation mechanisms, namely nanoparticle coalescence, metal dissolution and the corrosion of carbon support, to the total active surface area loss. The results obtained by investigating the impact of temperature, potential treatment and catalyst layer morphology on the aging behavior lead to a deeper understanding of the aging mechanisms and their interrelation at application-relevant conditions. Moreover, the previously reported improved performance of the Pt/HGS catalyst is confirmed also under higher temperatures. The experimental approach introduced in this work, highlights new challenges for high-temperature degradation investigations with supported PEMFC catalyst. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据