4.7 Article

An electron transfer competent structural ensemble of membrane-bound cytochrome P450 1A1 and cytochrome P450 oxidoreductase

期刊

COMMUNICATIONS BIOLOGY
卷 4, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s42003-020-01568-y

关键词

-

资金

  1. Klaus Tschira Foundation
  2. German Academic Exchange Service (DAAD)
  3. Center for Modeling and Simulation in the Biosciences (BIOMS)
  4. German Research Foundation (DFG) [INST 35/1134-1 FUGG]

向作者/读者索取更多资源

Mukherjee, Nandekar and Wade investigate the structural arrangement of the complex between membrane-bound cytochrome P450 1A1 and NADPH-cytochrome P450 reductase. They find that upon binding to the reductase, the catalytic domain of cytochrome P450 1A1 reorients subject to the constraints of membrane binding, potentially explaining why the electron transfer rates between the proteins are low when compared to those of soluble bacterial cytochrome P450s.
Cytochrome P450 (CYP) heme monooxygenases require two electrons for their catalytic cycle. For mammalian microsomal CYPs, key enzymes for xenobiotic metabolism and steroidogenesis and important drug targets and biocatalysts, the electrons are transferred by NADPH-cytochrome P450 oxidoreductase (CPR). No structure of a mammalian CYP-CPR complex has been solved experimentally, hindering understanding of the determinants of electron transfer (ET), which is often rate-limiting for CYP reactions. Here, we investigated the interactions between membrane-bound CYP 1A1, an antitumor drug target, and CPR by a multiresolution computational approach. We find that upon binding to CPR, the CYP 1A1 catalytic domain becomes less embedded in the membrane and reorients, indicating that CPR may affect ligand passage to the CYP active site. Despite the constraints imposed by membrane binding, we identify several arrangements of CPR around CYP 1A1 that are compatible with ET. In the complexes, the interactions of the CPR FMN domain with the proximal side of CYP 1A1 are supplemented by more transient interactions of the CPR NADP domain with the distal side of CYP 1A1. Computed ET rates and pathways agree well with available experimental data and suggest why the CYP-CPR ET rates are low compared to those of soluble bacterial CYPs. Mukherjee, Nandekar and Wade investigate the structural arrangement of the complex between membrane-bound cytochrome P450 1A1 and NADPH-cytochrome P450 reductase. They find that upon binding to the reductase, the catalytic domain of cytochrome P450 1A1 reorients subject to the constraints of membrane binding, potentially explaining why the electron transfer rates between the proteins are low when compared to those of soluble bacterial cytochrome P450s.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据