4.7 Article

New insights in the coordinated amidase and glucosaminidase activity of the major autolysin (Atl) in Staphylococcus aureus

期刊

COMMUNICATIONS BIOLOGY
卷 3, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s42003-020-01405-2

关键词

-

资金

  1. Projekt DEAL

向作者/读者索取更多资源

After bacterial cell division, the daughter cells are still covalently interlinked by the peptidoglycan network which is resolved by specific hydrolases (autolysins) to release the daughter cells. In staphylococci, the major autolysin (Atl) with its two domain enzymes, N-acetylmuramyl-L-alanine amidase (AmiA) and beta-N-acetylglucosaminidase (GlcA), resolves the peptidoglycan to release the daughter cells. Internal deletions in each of the enzyme domains revealed defined morphological alterations such as cell cluster formation in Delta amiA, Delta glcA and Delta atl, and asymmetric cell division in the Delta glcA. A most important finding was that GlcA activity requires the prior removal of the stem peptide by AmiA for its activity thus the naked glycan strand is its substrate. Furthermore, GlcA is not an endo-beta-N-acetylglucosaminidase but an exo-enzyme that cuts the glycan backbone to disaccharides independent of its O-acetylation modification. Our results shed new light into the sequential peptidoglycan hydrolysis by AmiA and GlcA during cell division in staphylococci. Nega et al. shed light on the interplay of the two domain enzymes of the major autolysin, AmiA and GlcA, in S. aureus for peptidoglycan hydrolysis during bacterial cell division. They show that GlcA requires the prior removal of the stem peptide by AmiA for its activity and that GlcA is not an endo-enzyme as previously thought, but an exo-enzyme that chops down the glycan backbone to disaccharides independent of its O-acetylation modification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据