4.7 Article

Battery lifetime prediction and performance assessment of different modeling approaches

期刊

ISCIENCE
卷 24, 期 2, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.isci.2021.102060

关键词

-

资金

  1. Flanders Make

向作者/读者索取更多资源

This study utilized a comprehensive aging dataset of nickel-manganese-cobalt oxide (NMC) cells to develop and train different capacity fade models, with the nonlinear autoregressive network (NARXnet) being able to most accurately predict capacity degradation while minimizing computational effort. The research highlights the importance of selecting the lifetime method and model performance in understanding the complex and nonlinear aging behavior of Li-ion batteries.
Lithium-ion battery technologies have conquered the current energy storage market as the most preferred choice thanks to their development in a longer lifetime. However, choosing the most suitable battery aging modeling methodology based on investigated lifetime characterization is still a challenge. In this work, a comprehensive aging dataset of nickel-manganese-cobalt oxide (NMC) cell is used to develop and/or train different capacity fade models to compare output responses. The assessment is conducted for semi-empirical modeling (SeM) approach against a machine learning model and an artificial neural network model. Among all, the nonlinear autoregressive network (NARXnet) can predict the capacity degradation most precisely minimizing the computational effort as well. This research work signifies the importance of lifetime methodological choice and model performance in understanding the complex and nonlinear Li-ion battery aging behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据