4.3 Article

CRISPR-Cas Non-Target Sites Inhibit On-Target Cutting Rates

期刊

CRISPR JOURNAL
卷 3, 期 6, 页码 550-561

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/crispr.2020.0065

关键词

-

资金

  1. ONR YIP [12043956]
  2. DOE EERE grant [EE0007563]
  3. Duke Innovation & Entrepreneurship Initiative

向作者/读者索取更多资源

CRISPR-Cas systems have become ubiquitous for genome editing in eukaryotic as well as bacterial systems. Cas9 forms a complex with a guide RNA (gRNA) and searches DNA for a matching sequence (target site) next to a protospacer adjacent motif (PAM). Once found, Cas9 cuts the DNA. Cas9 is revolutionary for the ability to change the RNA sequence and target a new site easily. However, while algorithms have been developed to predict gRNA-specific Cas9 activity, a fundamental biological understanding of gRNA-specific activity is lacking. The number of PAM sites in the genome is effectively a large pool of inhibitory substrates, competing with the target site for the Cas9/gRNA complex. We demonstrate that increasing the number of non-target sites for a given gRNA reduces on-target activity in a dose-dependent manner. Furthermore, we show that the use of Cas9 mutants with increased PAM specificity toward a smaller subset of PAMs (or smaller pool of competitive substrates) improves cutting rates, while increased PAM promiscuity decreases cutting rates. Decreasing the potential search space by increasing PAM specificity provides a path toward improving on-target activity for slower high-fidelity Cas9 variants. Engineering improved PAM specificity to reduce the competitive search space offers an alternative strategy to engineer Cas9 variants with increased specificity and maintained on-target activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据