4.7 Article

New Computational Geometry Methods Applied to Solve Complex Problems of Radiative Transfer

期刊

MATHEMATICS
卷 8, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/math8122176

关键词

mathematics applied to lighting and radiative transfer; configuration factors; computational geometry; parametric design; new solutions for equations of geometric optics; numerical computation of quadruple integrals

向作者/读者索取更多资源

Diverse problems of radiative transfer remain as yet unsolved due to the difficulties of the calculations involved, especially if the intervening shapes are geometrically complex. The main goal of our investigation in this domain is to convert the equations that were previously derived into a graphical interface based on the projected solid-angle principle. Such a procedure is now feasible by virtue of several widely diffused programs for Algorithms Aided Design (AAD). Accuracy and reliability of the process is controlled in the basic examples by means of subroutines from the analytical software DianaX, developed at an earlier stage by the authors, though mainly oriented to closed cuboidal or curved volumes. With this innovative approach, the often cumbersome calculation procedure of lighting, thermal or even acoustic energy exchange can be simplified and made available for the neophyte, with the undeniable advantage of reduced computer time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据