4.6 Article

Experimental investigation of the three-point bending properties of sandwich beams with polyurethane foam-filled lattice cores

期刊

STRUCTURES
卷 28, 期 -, 页码 424-432

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.istruc.2020.08.082

关键词

Energy absorption; Lattice sheet; Sandwich structures; Rigid polyurethane foam; Three-point bending

向作者/读者索取更多资源

In the present research, the energy absorption and collapse behaviors of a rigid polyurethane foam-filled sandwich beam with expanded metal sheets as core were studied. Three types of steel lattice core, both unfilled and foam-filled, were subjected to the quasi-static three-point bending test. Force-displacement relationships, collapse modes of the beam, and the impact parameters, including absorbed energy, crashing force efficiency and Specific Energy Absorption (SEA) were discussed. Also, the impact of the direction of the lattice sheets in the core of the sandwich beams, both longitudinal and transverse directions, as well as the effects of the cell geometry on energy absorption, was further evaluated. It was found that the polyurethane foam reinforcement could enhance the energy absorption of the sandwich beam by up to 80%. The appropriate direction of the lattice sheets in the core could increase the energy absorption by 74.6%. The presented sandwich beam with the polyurethane foam reinforced lattice core due to high absorption capacity and lightweight structure could be implemented as an energy absorber in the aerospace, transportation, and elevator industries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据