4.7 Article

Static and Dynamic Reliability Analysis of Laterally Loaded Pile Using Probability Density Function Method

期刊

出版社

MDPI
DOI: 10.3390/jmse8120994

关键词

laterally loaded piles; reliability; probability density function; Monte Carlo simulation

资金

  1. National Natural Science Fund of China [41902274]
  2. National Key R&D Program of China [2017YFC1501304]

向作者/读者索取更多资源

Pile foundation is one of the common foundation forms in marine geotechnical engineering, especially in wind power engineering. Its operation safety is seriously affected by many uncertainties, such as the randomness of ground motion in intensity and frequency. The stochastic reliability analysis method can better characterize these uncertainties in the evaluation of the safety performance of pile foundation. The probability density functions (PDFs) of stochastic systems are important prerequisites for reliability analysis. However, for geotechnical problems, the coupling between parametric and excitation randomness and the nonlinear mechanical properties of rock and soil make it very difficult to obtain the associated PDFs. Instead, the probability density evolution method (PDEM) is introduced and is used to investigate the static and dynamic reliability of laterally loaded piles as an example of a geotechnical problem. Compared with Monte Carlo stochastic simulations, PDEM-based computing is shown to be highly efficient when applied to the seismic design of pile in geotechnical engineering, and its calculation efficiency is 20 times of the former for the seismic dynamic reliability of pile foundation. This study provides a new reference for the efficient design and safety evaluation of offshore pile foundation engineering based on static and dynamic reliability of multiple random factors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据