4.6 Article

Interfacial Oxidized Gate Insulators for Low-Power Oxide Thin-Film Transistors

期刊

ACS OMEGA
卷 6, 期 4, 页码 2717-2726

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.0c04924

关键词

-

资金

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education [2017R1D1A1A02019514]
  2. National Research Foundation of Korea [2017R1D1A1A02019514] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

By investigating the interfacial oxidation between the gate metal and In-Ga-Zn oxide (IGZO), a top-gate oxide TFT was developed with low source-drain voltages below 0.5 V and a gate voltage swing less than 1 V, providing low power consumption. Through the application of positive bias to the gate metal for enhanced oxygen diffusion, the migration of oxygen was promoted, which is a key factor in interfacial oxidation.
Low power consumption is essential for wearable and internet-of-things applications. An effective way of reducing power consumption is to reduce the operation voltage using a very thin and high-dielectric gate insulator. In an oxide thin-film transistor (TFT), the channel layer is an oxide material in which oxygen reacts with metal to form a thin insulator layer. The interfacial oxidation between the gate metal and In-Ga- Zn oxide (IGZO) was investigated with AI, Ti, and Mo. Positive bias was applied to the gate metal for enhanced oxygen diffusion since the migration of oxygen is an important factor in interfacial oxidation. Through interfacial oxidation, a top-gate oxide TFT was developed with low source-drain voltages below 0.5 V and a gate voltage swing less than 1 V, which provide low power consumption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据