4.7 Article

Elevated Carbon Dioxide Levels Decreases Cucumber Mosaic Virus Accumulation in Correlation with Greater Accumulation of rgs-CaM, an Inhibitor of a Viral Suppressor of RNAi

期刊

PLANTS-BASEL
卷 10, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/plants10010059

关键词

cucumber mosaic virus; elevated CO2; RNA silencing; salicylic acid signaling pathway; 2b protein

资金

  1. National Key R&D Program of China [2017YFD0200400]
  2. National Natural Science Foundation of China [31770452, 31870394]
  3. Youth Innovation Promotion Association of the Chinese Academy of Sciences [2017112]

向作者/读者索取更多资源

Plant viruses can cause plant diseases, with the severity and spread of symptoms potentially impacted by climate change; elevated CO2 levels can reduce virus disease severity in some plants, possibly enhancing plant defense mechanisms; studies suggest that reduced disease occurrence under enhanced CO2 levels may be the norm.
Plant viruses cause a range of plant diseases symptoms that are often responsible for significant crop production losses and the severity and spread of the symptoms may be affected by climate change. While the increase in anthropogenic activities has caused a critical problem of increased CO2 levels in the atmosphere, these elevated CO2 levels have been reported to reduce virus disease severity in some plant species. In such instances, it is not clear if the plant defense mechanisms are being enhanced or virus-mediated mechanisms to overcome plant resistance are being defeated. Additionally, a few studies have been attempted in this area to determine if reduced disease is the norm or the exception under enhanced CO2 levels. In the present study, the effects of elevated CO2 levels (750 ppm vs. 390 ppm) on RNAi-mediated resistance of Nicotiana tabacum against the cucumber mosaic virus (CMV), and the activity of viral suppressor of RNAi (VSR) 2b protein of CMV were evaluated. On the one hand, our results showed that elevated CO2 decreased the transcription of dicer-like protein 2 (DCL2), DCL4, and argonaut 1 (AGO1) genes with functions related to RNAi-mediated resistance when infected by CMV, which is contradictory with the decreased CMV copy numbers under elevated CO2. On the other hand, we found that elevated CO2 increased the calcium concentration and expression of the calcium-binding protein rgs-CaM in tobacco plants when infected by CMV, which directly weakened the function of 2b protein, the VSR of CMV, and therefore decreased the infection efficiency of the virus and suppressed the severity of CMV in tobacco plants under elevated CO2. This study provides molecular insights into the ecological implications underlying the development of prevention strategies against plant virus infection in the context of climate change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据