4.6 Article

A Machine-Learning Approach for Dynamic Prediction of Sepsis-Induced Coagulopathy in Critically Ill Patients With Sepsis

期刊

FRONTIERS IN MEDICINE
卷 7, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmed.2020.637434

关键词

sepsis-induced coagulopathy; dynamic prediction; machine learning; Logistic Regression; external validation; model interpretation

资金

  1. Shanghai Municipal Health Commission [2019ZB0105]
  2. Natural Science Foundation of Shanghai [20ZR1411100]
  3. Program of Shanghai Academic/Technology Research Leader [20XD1421000]
  4. National Natural Science Foundation of China [82070085]
  5. Clinical Research Funds of Zhongshan Hospital [2020ZSLC38, 2020ZSLC27]
  6. Smart Medical Care of Zhongshan Hospital [2020ZHZS01]

向作者/读者索取更多资源

By utilizing machine-learning models, we developed two models that could dynamically predict the risk of SIC in septic patients, demonstrating better performance compared to conventional Logistic Regression and SIC scores.
Background: Sepsis-induced coagulopathy (SIC) denotes an increased mortality rate and poorer prognosis in septic patients. Objectives: Our study aimed to develop and validate machine-learning models to dynamically predict the risk of SIC in critically ill patients with sepsis. Methods: Machine-learning models were developed and validated based on two public databases named Medical Information Mart for Intensive Care (MIMIC)-IV and the eICU Collaborative Research Database (eICU-CRD). Dynamic prediction of SIC involved an evaluation of the risk of SIC each day after the diagnosis of sepsis using 15 predictive models. The best model was selected based on its accuracy and area under the receiver operating characteristic curve (AUC), followed by fine-grained hyperparameter adjustment using the Bayesian Optimization Algorithm. A compact model was developed, based on 15 features selected according to their importance and clinical availability. These two models were compared with Logistic Regression and SIC scores in terms of SIC prediction. Results: Of 11,362 patients in MIMIC-IV included in the final cohort, a total of 6,744 (59%) patients developed SIC during sepsis. The model named Categorical Boosting (CatBoost) had the greatest AUC in our study (0.869; 95% CI: 0.850-0.886). Coagulation profile and renal function indicators were the most important features for predicting SIC. A compact model was developed with an AUC of 0.854 (95% CI: 0.832-0.872), while the AUCs of Logistic Regression and SIC scores were 0.746 (95% CI: 0.735-0.755) and 0.709 (95% CI: 0.687-0.733), respectively. A cohort of 35,252 septic patients in eICU-CRD was analyzed. The AUCs of the full and the compact models in the external validation were 0.842 (95% CI: 0.837-0.846) and 0.803 (95% CI: 0.798-0.809), respectively, which were still larger than those of Logistic Regression (0.660; 95% CI: 0.653-0.667) and SIC scores (0.752; 95% CI: 0.747-0.757). Prediction results were illustrated by SHapley Additive exPlanations (SHAP) values, which made our models clinically interpretable. Conclusions: We developed two models which were able to dynamically predict the risk of SIC in septic patients better than conventional Logistic Regression and SIC scores.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据