4.7 Article

Experimental investigation on thermal performance of a battery liquid cooling structure coupled with heat pipe

期刊

JOURNAL OF ENERGY STORAGE
卷 32, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.est.2020.101984

关键词

Thermal performance; Cooling structure; Lithium-battery; Heat pipe; Cold plate

资金

  1. Key Research and Development Program of Yangzhou City [YZ2019012]

向作者/读者索取更多资源

Thermal management is critical in electric vehicles to maintain cell longevity and guarantee auto safety. A battery liquid cooling structure composed of cold plate and heat pipe is proposed under the premise that the heat pipe does not immersed in coolant directly. The effects of different evaporation part and condensation part length of the proposed HP-CP structure is studied. Influence factors such as flow rate of coolant water, ambient and inlet coolant water temperature, and battery discharging rate are investigated experimentally in detail. The results show that the coolant water flow needs to be selected comprehensively considering temperature rising and uniformity. Battery cooling system needs to pay attention to different indicators under diverse ambient and inlet water temperature. The HP-CP structure has the potential for battery cooling in fast charging rate. Finally, thermal performance of the battery operated under three discharging-charging cycles is investigated. Temperature rising and uniformity reach equilibrium state after the second cycle, so the HP-CP structure can meet cooling needs of battery continuous working. The weight of heat pipe-cooper plate structure used in experiments is only 253 g, accounting for a very small part of the whole cooling system. The proposed HP-CP structure provides a new idea and a feasible method for application of heat pipe coupling cold plate in battery thermal management.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据