4.7 Article

All solid state stretchable carbon nanotube based supercapacitors with controllable output voltage

期刊

JOURNAL OF ENERGY STORAGE
卷 32, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.est.2020.101844

关键词

Supercapacitor; Stretchable; CNT; Elastomer

资金

  1. CONACYT-Catedras program
  2. Welch Foundation of Texas [AT-1617]
  3. Increase Competitiveness Program of NUST MISiS [K2-2015-014]

向作者/读者索取更多资源

This work reports the electrochemical properties of stretchable supercapacitors fabricated with carbon nano tubes (CNTs) sheets as electrodes. According to the SEM images of the electrodes, the CNTs look like interconnected wires oriented in one direction. The electrochemical analysis indicated that the devices subjected from 0 to 150% strain decreased their capacitance from 712.2 to 88.4 F/g. Interestingly, the device stretched 525 times at 50% strain had a capacitance of 1328.3 F/g, which is one of the highest capacitance values reported so far for stretchable supercapacitors. The cycling voltammetry curves of the stretched devices showed redox peaks, suggesting that these devices store charge by Faradaic reactions. The presence of redox centers (carboxylic groups and oxygen vacancies) was confirmed by Fourier transform infrared spectroscopy, optical absorbance measurements, and X-ray photoelectron spectroscopy measurements. The galvanostatic charge/discharge curves showed the presence of two components: capacitive (discharge with exponential decay) and battery-type (stable output voltage). This output voltage was controlled with the strain %, since values of 1.05 V, 0.72 V, and 0.32 V were obtained for 0, 50, and 100% strain, respectively. The high capacitance and stable voltage demonstrated by the devices suggest that they could be used as energy sources in wearable/portable applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据