4.8 Article

Layer-wise anomaly detection and classification for powder bed additive manufacturing processes: A machine-agnostic algorithm for real-time pixel-wise semantic segmentation

期刊

ADDITIVE MANUFACTURING
卷 36, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.addma.2020.101453

关键词

Additive manufacturing; Machine learning; Convolutional neural network; In-situ anomaly detection; Semantic segmentation

资金

  1. Transformational Challenge Reactor (TCR) program
  2. US Department of Energy, Office of Nuclear Energy
  3. NextManufacturing Center at Carnegie Mellon University

向作者/读者索取更多资源

Increasing industry acceptance of powder bed metal Additive Manufacturing requires improved real-time detection and classification of anomalies. Many of these anomalies, such as recoater blade impacts, binder deposition issues, spatter generation, and some porosities, are surface-visible at each layer of the building process. In this work, the authors present a novel Convolutional Neural Network architecture for pixel-wise localization (semantic segmentation) of layer-wise powder bed imaging data. Key advantages of the algorithm include its ability to return segmentation results at the native resolution of the imaging sensor, seamlessly transfer learned knowledge between different Additive Manufacturing machines, and provide real-time performance. The algorithm is demonstrated on six different machines spanning three technologies: laser fusion, binder jetting, and electron beam fusion. Finally, the performance of the algorithm is shown to be superior to that of previous algorithms presented by the authors with respect to localization, accuracy, computation time, and generalizability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据