4.8 Article

The deformation and elastic anisotropy of a new gyroid-based honeycomb made by laser sintering

期刊

ADDITIVE MANUFACTURING
卷 36, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.addma.2020.101548

关键词

Gyroid; Lattice; Honeycomb; Powder bed fusion; Anisotropy

资金

  1. University of Nottingham

向作者/读者索取更多资源

The stiffness, anisotropy and structural deformation of three gyroid-based lattices was investigated, with particular focus on a newly proposed honeycomb gyroid. This honeycomb is based on a modified triply periodic minimal surface (TPMS) equation with reduced periodicity. Using the numerical homogenisation method, the anisotropy of the gyroid lattice types was found to differ greatly, as was the dependence of this anisotropy on the volume fraction. From compression testing of laser sintered polyamide PA2200 specimens, the honeycomb gyroid was found to possess extremely high anisotropy, with E-max*/E-min*, the ratio of the highest to the lowest direction-dependent modulus, similar to 250 at low volume fraction. The stiffness and anisotropy of the honeycomb gyroid are compared to equivalent results from the square honeycomb, the closest analogue in the set of conventional honeycomb types. The honeycomb gyroid lattice exhibited novel deformation and post-yield stiffening under in-plane loading; it underwent reorientation into a second, stiffer geometry following plastic bending and contact of its cell walls. The unique deformation behaviour and extremely high anisotropy of the honeycomb gyroid provide strong motivation for further investigations into this new family of reduced periodicity TPMS-based honeycombs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据