4.7 Article

Feed Preference Response of Weaner Bull Calves to Bacillus amyloliquefaciens H57 Probiotic and Associated Volatile Organic Compounds in High Concentrate Feed Pellets

期刊

ANIMALS
卷 11, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/ani11010051

关键词

microbial volatile organic compounds; odour; microbial spoilage; concentrate pellets; weaned calf preference

资金

  1. ARC linkage program [LP120200837]
  2. Ridley AgriProducts PTY Ltd. (Melbourne, Australia)
  3. Post Graduate Award (School of Veterinary Science, The University of Queensland)
  4. Australian Research Council [LP120200837] Funding Source: Australian Research Council

向作者/读者索取更多资源

This study confirmed that adding a new probiotic H57 can improve cattle's preference for feed pellets by reducing microbial spoilage, thus changing the pellets' odour. H57 was found to be effective only when stored at room temperature, decreasing the concentration of microbial volatile organic compounds and extending the shelf life of feed pellets.
Simple Summary The aim of this work was to confirm that a new probiotic (Bacillus amyloliquefaciens, H57) in stock-feed pellets make cattle want to eat them faster and that H57 increased preference by reducing the rate of microbial spoilage in stored pellets thereby changing the odour of the pellets. Odour was manipulated by manufacturing standard pellets with or without added H57 and then storing half of each for 4 months either in a chiller or at room temperature to make 4 different batches. These were offered, per day for 4 weeks, across 8 automated feed bunks, 1 pellet batch per 2 bunks, in amounts enough to satisfy the daily needs of a single group of 16 young bulls. A given bull could have chosen any of 4 feed batches to eat. The feed batches in the bunks that were emptied the fastest were considered to contain the most preferred batch. The H57 was found to improve preference for pellets but only when they were stored at room temperature and not if they were stored in a chiller. The most preferred pellets had the least concentration of microbial volatile organic compounds. This was consistent with our expectation that H57 inhibits microbial spoilage in feed pellets to improve shelf life. This study tested the hypothesis that Bacillus amyloliquefaciens strain H57 (H57) improves preference by reducing the development of microbial volatile organic compounds (mVOCs) in feed pellets. Sixteen bull calves were, for 4 weeks, provided equal access to a panel of 8 automated feed bunks in a single paddock with some hay. Each bunk contained pellets with (H57) or without (Control) the H57, each aged for 4 months at either ambient or chiller temperature. Each treatment was changed to a new bunk pair position weekly. Relative preference was determined according to weight of pellets remaining per hour per treatment bunk pair per 24 h. Pellets were analysed for volatile organic compounds (VOCs) and the concentrations tested for correlation with relative preference. Calves showed the lowest preference (p < 0.0001) for the Control/Ambient treatment whereas preference for all other treatments (H57/Ambient; H57/Chiller; Control/Chiller) was similar. The Control/Ambient treatment odour profile grouped differently to the other 3 treatments which grouped similarly to each other. Up to 16 mVOCs were determined to have potential as pre-ingestive signals for the extent of microbial spoilage. Further studies are required to find which combination of these mVOCs, when added to pellets, results in feed aversion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据