4.6 Article

Wind Turbine Operation Curves Modelling Techniques

期刊

ELECTRONICS
卷 10, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/electronics10030269

关键词

wind energy; wind turbines; data analysis; operation curves; control and monitoring

向作者/读者索取更多资源

Wind turbines exhibit complex behavior due to varying environmental conditions, and this study focuses on analyzing meaningful operation curves to predict power output accurately. By utilizing multivariate Support Vector Regression with additional input variables, the models show improved performance in predicting power output with reduced error metrics. The approach presented in this study offers a superior capability to interpret wind turbine performance and reduces dependence on nacelle anemometer data, leading to more accurate power predictions.
Wind turbines are machines operating in non-stationary conditions and the power of a wind turbine depends non-trivially on environmental conditions and working parameters. For these reasons, wind turbine power monitoring is a complex task which is typically addressed through data-driven methods for constructing a normal behavior model. On these grounds, this study is devoted the analysis of meaningful operation curves, which are rotor speed-power, generator speed-power and blade pitch-power. A key point is that these curves are analyzed in the appropriate operation region of the wind turbines: the rotor and generator curves are considered for moderate wind speed, when the blade pitch is fixed and the rotational speed varies (Region 2); the blade pitch curve is considered for higher wind speed, when the rotational speed is rated (Region 2 12). The selected curves are studied through a multivariate Support Vector Regression with Gaussian Kernel on the Supervisory Control And Data Acquisition (SCADA) data of two wind farms sited in Italy, featuring in total 15 2 MW wind turbines. An innovative aspect of the selected models is that minimum, maximum and standard deviation of the independent variables of interest are fed as input to the models, in addition to the typically employed average values: using the additional covariates proposed in this work, the error metrics decrease of order of one third, with respect to what would be obtained by employing as regressors only the average values of the independent variables. In general it results that, for all the considered curves, the prediction of the power is characterized by error metrics which are competitive with the state of the art in the literature for multivariate wind turbine power curve analysis: in particular, for one test case, a mean absolute percentage error of order of 2.5% is achieved. Furthermore, the approach presented in this study provides a superior capability of interpreting wind turbine performance in terms of the behavior of the main sub-components and eliminates as much as possible the dependence on nacelle anemometer data, whose use is critical because of issues related to the sites complexity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据