4.6 Article

In situ pilot application of nZVI embedded in activated carbon for remediation of chlorinated ethene-contaminated groundwater: effect on microbial communities

期刊

ENVIRONMENTAL SCIENCES EUROPE
卷 32, 期 1, 页码 -

出版社

SPRINGER
DOI: 10.1186/s12302-020-00434-2

关键词

nZVI-AC; nZVI; Chlorinated ethenes; Reductive dechlorination; Organohalide-respiring bacteria; Microbial community; Next generation sequencing

资金

  1. European Union's Seventh Framework Programme for Research, Technological Development and Demonstration [309517]
  2. Ministry of Education, Youth and Sports (CZ) [LM2018124]
  3. Investment Funds [CZ.02.1.01/0.0/0.0/16_019/0000843]
  4. Ministry of Education, Youth and Sports through the Technical University of Liberec [SGS-2019-3054]

向作者/读者索取更多资源

BackgroundNanoscale zero-valent iron (nZVI) is commonly used for remediation of groundwater contaminated by chlorinated ethenes (CEs); however, its long-term reactivity and subsurface transport are limited. A novel nZVI-AC material, consisting of colloidal activated carbon (AC) with embedded nZVI clusters, was developed with the aim of overcoming the limitations of nZVI alone.ResultsApplication of a limited amount of nZVI-AC to an oxic, nitrate-rich, highly permeable quaternary aquifer triggered time-limited transformation of CEs, with noticeable involvement of reductive dechlorination. Reductive dechlorination of CEs was dominantly abiotic, as an increase in the concentration of vinyl chloride (VC) and ethene did not coincide with an increase in the abundance of reductive biomarkers for complete dechlorination of CEs (Dehalococcoides, Dehalogenimonas, VC reductase genes vcrA and bvcA). Application of nZVI-AC under unfavourable hydrochemical conditions resulted in no dramatic change in the microbial community, the reducing effect resulting in temporal proliferation of nitrate and iron reducers only. At a later stage, generation of reduced iron induced an increase in iron-oxidizing bacteria. High concentrations and a continuous mass influx of competing electron acceptors (nitrate and dissolved oxygen) created unfavourable conditions for sulphate-reducers and organohalide-respiring bacteria, though it allowed the survival of aerobic microorganisms of the genera Pseudomonas, Polaromonas and Rhodoferax, known for their ability to assimilate VC or cis-1,2-dichloroethene. A potential for aerobic oxidative degradation of CE metabolites was also indicated by detection of the ethenotroph functional gene etnE.ConclusionsThis pilot study, based on the application of nZVI-AC, failed to provide a sustainable effect on CE contamination; however, it provided valuable insights into induced hydrogeochemical and microbial processes that could help in designing full-scale applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据