4.4 Article

Proliferation and tenogenic differentiation of bone marrow mesenchymal stem cells in a porous collagen sponge scaffold

期刊

WORLD JOURNAL OF STEM CELLS
卷 13, 期 1, 页码 115-127

出版社

BAISHIDENG PUBLISHING GROUP INC
DOI: 10.4252/wjsc.v13.i1.115

关键词

Bone marrow mesenchymal stem cells; Collagen sponge; Transforming growth factor beta 1; Tenogenic differentiation; Proliferation; Collagen deposition

资金

  1. Natural National Science Foundation of China [31700810, 11772073]
  2. Science and Technology Research Program of Chongqing Municipal Education Commission [KJQN201800601]
  3. Natural Science Foundation of Chongqing, China [cstc2020jcyj-msxmX0760]
  4. Visiting Scholar Foundation of Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education [CQKLBST-2018007]

向作者/读者索取更多资源

By adding TGF-beta 1 in a collagen sponge-based 3D culture system, the proliferation and tenogenic differentiation of rat BMSCs can be enhanced. The 3D culture significantly improved the differentiation of BMSCs into tenocytes compared to 2D culture, with TGF-beta 1 playing a crucial role in this process.
BACKGROUND Collagen is one of the most commonly used natural biomaterials for tendon tissue engineering. One of the possible practical ways to further enhance tendon repair is to combine a porous collagen sponge scaffold with a suitable growth factor or cytokine that has an inherent ability to promote the recruitment, proliferation, and tenogenic differentiation of cells. However, there is an incomplete understanding of which growth factors are sufficient and optimal for the tenogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) in a collagen sponge-based 3D culture system. AIM To identify one or more ideal growth factors that benefit the proliferation and tenogenic differentiation of rat BMSCs in a porous collagen sponge scaffold. METHODS We constructed a 3D culture system based on a type I collagen sponge scaffold. The surface topography of the collagen sponge scaffold was observed by scanning electron microscopy. Primary BMSCs were isolated from Sprague-Dawley rats. Cell survival on the surfaces of the scaffolds with different growth factors was assessed by live/dead assay and CCK-8 assay. The mRNA and protein expression levels were confirmed by quantitative real-time polymerase chain reaction and Western blot, respectively. The deposited collagen was assessed by Sirius Red staining. RESULTS Transforming growth factor beta 1 (TGF-beta 1) showed great promise in the tenogenic differentiation of BMSCs compared to growth differentiation factor 7 (GDF-7) and insulin-like growth factor 1 (IGF-1) in both the 2D and 3D cultures, and the 3D culture enhanced the differentiation of BMSCs into tenocytes well beyond the level of induction in the 2D culture after TGF-beta 1 treatment. In the 2D culture, the proliferation of the BMSCs showed no significant changes compared to the control group after TGF-beta 1, IGF-1, or GDF-7 treatment. However, TGF-beta 1 and GDF-7 could increase the cell proliferation in the 3D culture. Strangely, we also found more dead cells in the BMSC-collagen sponge constructs that were treated with TGF-beta 1. Moreover, TGF-beta 1 promoted more collagen deposition in both the 2D and 3D cultures. CONCLUSION Collagen sponge-based 3D culture with TGF-beta 1 enhances the responsiveness of the proliferation and tenogenic differentiation of rat BMSCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据