4.8 Article

Giant enhancement of exciton diffusivity in two-dimensional semiconductors

期刊

SCIENCE ADVANCES
卷 6, 期 51, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.abb4823

关键词

-

资金

  1. NSF [EFMA 1741693, DMR 1709934]

向作者/读者索取更多资源

Two-dimensional (2D) semiconductors bear great promise for application in optoelectronic devices, but the low diffusivity of excitons stands as a notable challenge for device development. Here, we demonstrate that the diffusivity of excitons in monolayer MoS2 can be improved from 1.5 +/- 0.5 to 22.5 +/- 2.5 square centimeters per second with the presence of trapped charges. This is manifested by a spatial expansion of photoluminescence when the incident power reaches a threshold value to enable the onset of exciton Mott transition. The trapped charges are estimated to be in a scale of 10(10) per square centimeter and do not affect the emission features and recombination dynamics of the excitons. The result indicates that trapped charges provide an attractive strategy to screen exciton scattering with phonons and impurities/defects. Pointing towards a new pathway to control exciton transport and many-body interactions in 2D semiconductors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据