4.6 Article

Nonexponential Length Dependence of Molecular Conductance in Acene-Based Molecular Wires

期刊

ACS SENSORS
卷 6, 期 2, 页码 477-484

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssensors.0c02049

关键词

single molecule electronics; molecular wires; acenes; conductance decay; length dependence; HOMO-LUMO gap

资金

  1. FulbrightGarcia Robles Scholarship

向作者/读者索取更多资源

In the study, the conductance of acene derivatives connected to gold electrodes was calculated using density functional theory (DFT) combined with the nonequilibrium Green's function (NEGF) formalism. It was found that the systems exhibit near length-independent conductance and can show an increase with molecular length, depending on the connection to the electrodes. The analysis attributes this behavior to the decrease of the HOMO-LUMO gap with length, shifting the transmission peaks near the Fermi level.
In the nonresonant regime, molecular conductance decays exponentially with distance, limiting the fabrication of efficient molecular semiconductors at the nanoscale. In this work, we calculate the conductance of a series of acene derivatives connected to gold electrodes using density functional theory (DFT) combined with the nonequilibrium Green's function (NEGF) formalism. We show that these systems have near length-independent conductance and can exhibit a conductance increase with molecular length depending on the connection to the electrodes. The analysis of the molecular orbital energies and transmission functions attribute this behavior to the dramatic decrease of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap with length, which shifts the transmission peaks near the Fermi level. These results demonstrate that the anchoring configuration determines the conductance behavior of acene derivatives, which are optimal building blocks to fabricate single-molecule devices with tunable charge transport properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据