4.6 Article

Dual-Band Plasmonic Perfect Absorber Based on the Hybrid Halide Perovskite in the Communication Regime

期刊

COATINGS
卷 11, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/coatings11010067

关键词

plasmonics; absorption; metamaterial; halide perovskites

资金

  1. National Natural Science Foundation of China [11764018, 61505052]
  2. Natural Science Foundation of Jiangxi Province [20192BAB212003, 20202ACBL211004]
  3. Science and Technology Project of the Education Department of Jiangxi Province [GJJ180426, GJJ200655]

向作者/读者索取更多资源

A dual-band perfect absorber based on (CH3NH3)PbI3 is designed to significantly enhance its absorption capability by exciting localized plasmon and surface plasmon modes. The absorber forms dual-band perfect absorption peaks in the communication regime, with the absorption of (CH3NH3)PbI3 layer increased to 43.1% and 64.2% at the dual-band absorption peaks. The physical mechanism in this absorber can also be utilized to strengthen the absorption of other halide perovskites, maintaining good performance under wide angles of incidence and different polarization states.
Due to the weak absorption of (CH3NH3)PbI3 in the communication regime, which restricts its optoelectronic applications, we design a adjustable dual-band perfect absorber based on the (CH3NH3)PbI3 to significantly enhance its absorption capability. Since the localized plasmon (LP) mode and surface plasmon (SP) mode are excited in the structure, which can both greatly enhance light absorption of the (CH3NH3)PbI3 layer, dual-band perfect absorption peaks are formed in the communication regime, and the absorption of (CH3NH3)PbI3 layer is increased to 43.1% and 64.2% at the dual-band absorption peaks by using finite-difference time-domain (FDTD) methods, respectively. By varying some key structural parameters, the dual-band absorption peaks of (CH3NH3)PbI3 can be separately shifted in a wide wavelength region. Moreover, the designed absorber can keep good performance under wide angles of incidence and manifested polarization correlation. Furthermore, not just for (CH3NH3)PbI3, the physical mechanism in this absorber can also be utilized to strengthen the absorption of other halide perovskites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据