4.5 Article

Ecosystem-Atmosphere Exchange of CO2, Water, and Energy in a Basin Mangrove of the Northeastern Coast of the Yucatan Peninsula

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2020JG005811

关键词

coastal ecosystem; ecohydrology; ecosystem function; eddy covariance; inundation; vertical fluxes

资金

  1. CONACyT [269269]
  2. El Colegio de la Frontera Sur

向作者/读者索取更多资源

This study evaluated the impact of flooding and air temperature on the CO2 exchange in a basin mangrove ecosystem, finding that under unflooded conditions, high temperatures significantly reduce CO2 uptake while increasing evapotranspiration and sensible heat flux. CO2 uptake increases with temperature and vapor pressure deficit, but declines after reaching a certain threshold.
Coastal settings variations are linked to composition, structural, and functional differences among mangrove ecotypes. Basin mangroves undergo larger flooding and salinity fluctuations, yet remain understudied, compared to other ecotypes. We evaluated the effect of flooding and air temperature (T (a)) on the surface energy balance and eddy covariance-derived net CO2 ecosystem exchange (NEE) of a basin mangrove with sporadic freshwater flooding. During the study period (June 2017-November 2018) the site was more frequently not flooded. Under these conditions, in combination with high T (a) (>27 degrees C), daytime CO2 uptake was significantly lower, while evapotranspiration and sensible heat flux were higher than when flooded. CO2 uptake increased with T (a) and vapor pressure deficit, but after exceeding a threshold (29 degrees C and 1.4 kPa), uptake declined. Flooding extended this T (a) threshold by 3 degrees C and increased the radiation saturation point of NEE. The ecosystem is a net sink of CO2 annually (709 +/- 09 g C m(-2) yr(-1)), however, it turned a net source of CO2 for 3 months of prolonged rainfall deficit. Most of the precipitation input is returned to the atmosphere (evaporative index: 0.94) and on average, for each gram of atmospheric carbon assimilated into the ecosystem, 2.21 +/- 0.50 kg of water was returned to the atmosphere. This ecosystem-level water-use efficiency decreased with flooding, but the correlation was not strong. Future temperature increases and lower precipitation (local and regional), combined with lower water table (and/or stronger saline intrusion), imply important losses of primary productivity and stored soil carbon in basin mangroves of northeast Yucatan Peninsula.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据