4.5 Article

MDCT-Based Radiomics Features for the Differentiation of Serous Borderline Ovarian Tumors and Serous Malignant Ovarian Tumors

期刊

CANCER MANAGEMENT AND RESEARCH
卷 13, 期 -, 页码 329-336

出版社

DOVE MEDICAL PRESS LTD
DOI: 10.2147/CMAR.S284220

关键词

ovarian tumors; multidetector computed tomography; MDCT; radiomics

类别

向作者/读者索取更多资源

MDCT-based radiomics features can be used as biomarkers for the differentiation of SBOTs and SMOTs, with no significant differences found among the three models incorporating radiomics parameters generated by SVM classifiers in each phase.
Objective: To investigate whether multidetector computed tomography (MDCT)-based radiomics features can discriminate between serous borderline ovarian tumors (SBOTs) and serous malignant ovarian tumors (SMOTs). Patients and Methods: Eighty patients with SBOTs and 102 patients with SMOTs, confirmed by pathology (training set: n = 127; validation set: n = 55) from December 2017 to June 2020, were enrolled in this study. The interclass correlation coefficient (ICC) and least absolute shrinkage and selection operator (LASSO) regression were applied to select radiomics parameters derived from MDCT images on the arterial phase (AP), venous phase (VP), and equilibrium phase (EP). Receiver operating characteristic (ROC) analysis of each selected parameter was carried out. Heat maps were created to illustrate the distribution of the radiomics parameters. Three models incorporating selected radiomics parameters generated by support vector machine (SVM) classifiers in each phase were analyzed by ROC and compared using the DeLong test. Results: The most predictive features selected by ICC and LASSO regression between SBOTs and SMOTs included 9 radiomics parameters on AP, VP, and EP each. Three models on AP, VP, and EP incorporating the selected features generated by SVM classifiers produced AUCs of 0.80 (accuracy, 0.75; sensitivity, 0.74; specificity, 0.75), 0.86 (accuracy, 0.78; sensitivity, 0.80; specificity, 0.75), and 0.73 (accuracy, 0.69; sensitivity, 0.71; specificity, 0.67), respectively. There were no significant differences in the AUCs among the three models (AP vs. VP, P = 0.199; AP vs. EP, P = 0.260; VP vs. EP, P = 0.793). Conclusion: MDCT-based radiomics features could be used as biomarkers for the differentiation of SBOTs and SMOTs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据