4.7 Article

Texture-sensitive prediction of micro-spring performance using Gaussian process models calibrated to fi nite element simulations

期刊

MATERIALS & DESIGN
卷 197, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2020.109198

关键词

Finite element models; Polycrystal microstructures; Texture; Generalized spherical harmonics; Gaussian process regression; Sequential design

资金

  1. U.S. Department of Energy's National Nuclear Security Administration [DE-NA0003525]
  2. [N00014-18-1-2879]

向作者/读者索取更多资源

This paper explores the feasibility and benefits of constructing a computationally low-cost surrogate model linking the mechanical performance of micro-springs to crystallographic texture and single-crystal elastic constants. The strategy implemented in this work proved to be remarkably efficient in producing the desired surrogate model. The utility of the surrogate model established in this work is demonstrated with a case study addressing an inverse solution for the specific crystallographic texture that maximizes the micro-spring performance for a selected material.
This paper explores the viability and benefits of building a computationally low-cost surrogatemodel relating the mechanical performance of micro-springs to crystallographic texture and single-crystal elastic constants. This task is accomplished by leveraging advances in (i) computationally-expensive finite element (FE) models that explicitly incorporates the constitutive response of individual grains in to simulate the overall mechanical response of the micro-spring, (ii) efficient parametrization of the extremely large space of textures using Fourier basis (i.e., generalized spherical harmonics), (iii) sequential design of FE simulations to maximize model fidelity while also minimizing the overall computational expense incurred in generating the data, and (iv) the use of Gaussian processmodels for incorporating uncertainty quantification into the development of the desired surrogate model. The strategy implemented in this work proved to be remarkably efficient in producing the desired surrogate model. The utility of the surrogate model established in this work is demonstrated with a case study addressing an inverse solution for the specific crystallographic texture that maximizes the micro-spring performance for a selected material. (C) 2020 The Authors. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据