4.7 Article

Engineering toughening mechanisms in architectured ceramic-based bioinspired materials

期刊

MATERIALS & DESIGN
卷 198, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2020.109375

关键词

Bioinspired materials; Architectured ceramics; Computational model; Digital image correlation; Dynamic toughening mechanisms

资金

  1. security, materials, and technologies (SMT) program at National Research Council Canada (NRC)

向作者/读者索取更多资源

This study investigates the preparation of bioinspired multilayered architectured ceramics and evaluates their toughening and deformation mechanisms under low-velocity impact load regimes, using a combination of advanced computational models and 3D digital image correlation (DIC). The results reveal that the primary source of toughening in the architectured ceramic systems is extrinsic, resulting from extensive crack deflection and delamination, resulting in a significant increase in toughness compared to plain ceramics.
Ceramics offer many attractive properties including low-density, high compressive strength, remarkable thermal stability, and high oxidation/corrosion resistance. However, these materials suffer from brittleness, which substantially limits the range of their applications, where high toughness is required. This investigation draws inspiration from a concept of architectures with three-dimensional (3D) networks of weak interfaces targeting high toughness ceramics. In this study, a comprehensive method combining an advanced computational model with 3D digital image correlation (DIC) was developed to engineer bioinspired multilayered architectured ceramics and assesses their toughening and deformation mechanisms when subjected to a low-velocity impact load regime. A complete finite element (FE) analysis was conducted to precisely evaluate the crack growth and displacement field of the architectured ceramics and is compared to those of plain ceramics. The damage and displacement evolution results from FE analysis and experimental testing revealed that the primary source of toughening of the architectured ceramic systems is extrinsic, resulting from extensive crack deflection and delamination. Crack propagation along an irregular long path at the weak interfaces of architectured layers increased the toughness of the plain ceramics by two orders of magnitude. Based on the DIC data, both extrinsic and intrinsic toughening mechanisms were captured: sliding of the tiles in the architectured ceramics and channel plastic deformation in adhesive interlayers, respectively. (C) 2020 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据