4.2 Article

Computational exploration for radiative flow of Sutterby nanofluid with variable temperature-dependent thermal conductivity and diffusion coefficient

期刊

OPEN PHYSICS
卷 18, 期 1, 页码 1073-1083

出版社

DE GRUYTER POLAND SP Z O O
DOI: 10.1515/phys-2020-0216

关键词

diffusion of mass species; cylindrical flow; Sutterby rheology; variable thermophysical properties; thermal radiation

资金

  1. National Natural Science Foundation of China [11971142, 11871202, 61673169, 11701176, 11626101, 11601485]

向作者/读者索取更多资源

This article addresses the effects of thermal radiation, stratification, and Joule heating for the flow of magnetohydrodynamics Sutterby nanofluid past over a stretching cylinder. The transport phenomenon of heat and mass are modeled under temperature-dependent thermal conductivity and diffusion coefficients, respectively. Moreover, traditional Fourier and Fick's laws have been implemented in thermal and mass transport expressions. The governing model that consists of a set of coupled partial differential equations is converted into system of nonlinear coupled ordinary differential equations via suitable similarity transformations. The resulting set of expressions is analytically treated through an optimal homotopy scheme. The effects of different dimensionless flow parameters on the velocity, temperature, and concentration fields are illustrated through graphs. The patterns of skin friction coefficient, local Nusselt, and Sherwood numbers are examined via bar charts. The major outcome of the proposed study is that variable thermal conductivity decays the temperature and radiation raises the temperature of the system. Stratification parameters show the reverse behavior for temperature and concentration boundary layers. Shear rate-dependent rheology in view of Sutterby liquid has the ability to reduce the flow of fluid. Therefore, the ability of flow in rheology of Sutterby liquid becomes reduced. Consequently, layer of momentum boundary has increased with respect to parameter of Sutterby liquid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据