4.8 Article

Bacterial community assemblages in classroom floor dust of 50 public schools in a large city: characterization using 16S rRNA sequences and associations with environmental factors

期刊

MICROBIOME
卷 9, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s40168-020-00954-2

关键词

School; Classroom; Bacteria; Microbiome; Moisture damage

资金

  1. National Institute for Occupational Safety and Health intramural Public Health Practice funding

向作者/读者索取更多资源

Characterizing indoor microbial communities in 50 elementary schools revealed that classroom floor dust had a characteristic bacterial community different from house dust. Factors such as school location, degree of water damage, and building condition influenced bacterial richness and composition, but the classroom microbiome showed relative stability.
Characterizing indoor microbial communities using molecular methods provides insight into bacterial assemblages present in environments that can influence occupants' health. We conducted an environmental assessment as part of an epidemiologic study of 50 elementary schools in a large city in the northeastern USA. We vacuumed dust from the edges of the floor in 500 classrooms accounting for 499 processed dust aliquots for 16S Illumina MiSeq sequencing to characterize bacterial assemblages. DNA sequences were organized into operational taxonomic units (OTUs) and identified using a database derived from the National Center for Biotechnology Information. Bacterial diversity and ecological analyses were performed at the genus level. We identified 29 phyla, 57 classes, 148 orders, 320 families, 1193 genera, and 2045 species in 3073 OTUs. The number of genera per school ranged from 470 to 705. The phylum Proteobacteria was richest of all while Firmicutes was most abundant. The most abundant order included Lactobacillales, Spirulinales, and Clostridiales. Halospirulina was the most abundant genus, which has never been reported from any school studies before. Gram-negative bacteria were more abundant and richer (relative abundance = 0.53; 1632 OTUs) than gram-positive bacteria (0.47; 1441). Outdoor environment-associated genera were identified in greater abundance in the classrooms, in contrast to homes where human-associated bacteria are typically more abundant. Effects of school location, degree of water damage, building condition, number of students, air temperature and humidity, floor material, and classroom's floor level on the bacterial richness or community composition were statistically significant but subtle, indicating relative stability of classroom microbiome from environmental stress. Our study indicates that classroom floor dust had a characteristic bacterial community that is different from typical house dust represented by more gram-positive and human-associated bacteria. Health implications of exposure to the microbiomes in classroom floor dust may be different from those in homes for school staff and students.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据