4.5 Article

Investigating the effect of carbon support on palladium-based catalyst towards electro-oxidation of ethylene glycol

期刊

MATERIALS RESEARCH EXPRESS
卷 8, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/2053-1591/abd9fb

关键词

electrocatalyst; alcohol electrooxidation; carbon nanotubes; carbon nanodots

向作者/读者索取更多资源

Palladium-based catalysts supported on carbon nanotubes and carbon nanodots have shown promising potential in efficiently oxidizing ethylene glycol, with Pd/CNT catalyst demonstrating greater stability and resistance to poisoning by carbon monoxide intermediates during the oxidation process.
Palladium-based catalysts serve as promising electrocatalysts for the oxidation of ethylene glycol to produce electrical energy that can be used to address the continuous worldwide energy demand increments along with the depletion of fossil fuels which serve as the main energy source. For optimal catalysts performance, carbon nanotubes and carbon nanodots were investigated as palladium catalyst support materials to address difficulties in oxidizing and breaking the C-C bonds in ethylene glycol, cost of electrocatalyst, and complex reaction mechanism that is restraining rapid development and applications of direct ethylene glycol fuel cells (DEGFC). Utilization of palladium catalysts supported on carbon nanotubes (CNT) and carbon nanodots (CND) as support materials resulted in spontaneous ethylene glycol oxidation. The Pd/CNT catalyst showed greater stability compared to Pd/CND during the oxidation of ethylene glycol, and it is not easily poisoned by carbon monoxide intermediates formed during ethylene glycol oxidation as shown by a slow current decay on chronoamperometry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据