4.6 Article

Airplane Vortices Evolution Near Ground

期刊

APPLIED SCIENCES-BASEL
卷 11, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/app11010457

关键词

under wing vortex; airport throughput optimization; potential flow

向作者/读者索取更多资源

This paper analyzes the evolution and effects of vortices under airplane wings using complex potential equations and Bernoulli potential equations, with the goal of optimizing aircraft landing and takeoff times. The study shows that measuring and calculating vortex behavior can increase airport throughput by saving time between airplanes.
Airport traffic around the world has sharply increased over the years; as a result, airports need to be enlarged and the landing or taking off times between two consecutive airplanes must be reduced. To precisely determine the minimum time required between two consecutive airplanes, it is essential to understand the main physical characteristics of the vortices generated under airplanes' wings and their evolution under different atmospheric conditions. In the present paper, such information is obtained through the complex potential equation of a vortex together with the potential Bernoulli equation. The process starts with the characteristic complex potential equation, which is simplified to find the velocity potential function. Then, the temporal movement of the vortices' central core, the velocity and pressure fields around the vortical structures and the effect of the crosswind on the vortices' displacement, velocity and pressure fields are obtained. The paper shows how optimizing the process of measuring and calculating the vortices' behavior could save a certain amount of time between airplanes, therefore increasing airport throughput. This paper introduces a potential flow method, which is coupled with the temporal variation of the flow circulation, to predict the vortices' behavior and movement over time. The inclusion of circulation decay over time is employed to simulate the viscosity effect over the vortical structures. The in-house code generates results in less than one minute and needs to be seen as a tool to determine, for each airport and crosswind condition, the minimum time needed between two consecutive airplanes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据