4.6 Article

Flower visitors of Streptocarpus teitensis: implications for conservation of a critically endangered African violet species in Kenya

期刊

PEERJ
卷 9, 期 -, 页码 -

出版社

PEERJ INC
DOI: 10.7717/peerj.10473

关键词

African violets; Fruit set; Pollinator networks; Pollination; Saintpaulia; Taita hills

资金

  1. Mohamed bin Zayed Species Conservation Fund [18251921]

向作者/读者索取更多资源

African violets, endemic to Eastern Arc Mountains, rely on insect pollinators for increased fruit set. While insects are essential for pollination success, there is evidence of potential self-pollination in these plants, indicating a mixed breeding system.
Background: The African violets are endangered plant species restricted mainly to the Eastern Arc Mountains biodiversity hotspots in Kenya and Tanzania. These plants grow well in shaded environments with high humidity. Given their restricted geographical range and published evidence of dependance on insect vectors to facilitate sexual reproduction, understanding their pollination biology is vital for their survival. Methods: We conducted an empirical study using flower visitor observations, pan trapping and bagging experiments to establish the role of flower visitors in the fruit set of a locally endemic and critically endangered species of African violet in Taita Hills, Kenya, Streptocarpus teitensis. Results: The study found that fruit set is increased by 47.8% in S. teitensis when flowers are visited by insects. However, it is important to note the presence of putative autogamy suggesting S. teitensis could have a mixed breeding system involving self-pollination and cross-pollination since bagged flowers produced 26.9% fruit set. Conclusions: Insects appear to be essential flower visitors necessary for increased fruit set in S. teitensis. However, there is evidence of a mixed breeding system involving putative self-pollination and cross-pollination suggesting that S. teitensis is somewhat shielded from the negative effects of pollinator losses. Consequently, S. teitensis appears to be protected to a degree from the risks such as reproduction failure associated with pollinator losses by the presence of a safety net in putative self-pollination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据