4.7 Article

Graphene Quantum Dot-TiO2 Photonic Crystal Films for Photocatalytic Applications

期刊

NANOMATERIALS
卷 10, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/nano10122566

关键词

graphene quantum dots; photonic crystals; titanium dioxide; photocatalysis; slow photons

资金

  1. Hellenic Foundation for Research and Innovation [543]

向作者/读者索取更多资源

Photonic crystal structuring has emerged as an advanced method to enhance solar light harvesting by metal oxide photocatalysts along with rational compositional modifications of the materials' properties. In this work, surface functionalization of TiO2 photonic crystals by blue luminescent graphene quantum dots (GQDs), n-pi* band at ca. 350 nm, is demonstrated as a facile, environmental benign method to promote photocatalytic activity by the combination of slow photon-assisted light trapping with GQD-TiO2 interfacial electron transfer. TiO2 inverse opal films fabricated by the co-assembly of polymer colloidal spheres with a hydrolyzed titania precursor were post-modified by impregnation in aqueous GQDs suspension without any structural distortion. Photonic band gap engineering by varying the inverse opal macropore size resulted in selective performance enhancement for both salicylic acid photocatalytic degradation and photocurrent generation under UV-VIS and visible light, when red-edge slow photons overlapped with the composite's absorption edge, whereas stop band reflection was attenuated by the strong UVA absorbance of the GQD-TiO2 photonic films. Photoelectrochemical and photoluminescence measurements indicated that the observed improvement, which surpassed similarly modified benchmark mesoporous P25 TiO2 films, was further assisted by GQDs electron acceptor action and visible light activation to a lesser extent, leading to highly efficient photocatalytic films.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据