4.7 Article

Inhibition of African swine fever virus in liquid and feed by medium-chain fatty acids and glycerol monolaurate

期刊

出版社

BMC
DOI: 10.1186/s40104-020-00517-3

关键词

African swine fever virus; Antiviral; Feed pathogen mitigation; MCFA; Medium-chain fatty acids; Monoglycerides

资金

  1. Natural Biologics Inc.
  2. National Research Foundation of Korea (NRF) - Korean government (MSIT) [2020R1C1C1004385]
  3. National Research Foundation of Korea [2020R1C1C1004385] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Background The ongoing African swine fever virus (ASFv) epidemic has had a major impact on pig production globally and biosecurity efforts to curb ASFv infectivity and transmission are a high priority. It has been recently identified that feed and feed ingredients, along with drinking water, can serve as transmission vehicles and might facilitate transboundary spread of ASFv. Thus, it is important to test the antiviral activity of regulatory compatible, antiviral feed additives that might inhibit ASFv infectivity in feed. One promising group of feed additive candidates includes medium-chain fatty acids (MCFA) and monoglyceride derivatives, which are known to disrupt the lipid membrane surrounding certain enveloped viruses and bacteria. Results The antiviral activities of selected MCFA, namely caprylic, capric, and lauric acids, and a related monoglyceride, glycerol monolaurate (GML), to inhibit ASFv in liquid and feed conditions were investigated and suitable compounds and inclusion rates were identified that might be useful for mitigating ASFv in feed environments. Antiviral assays showed that all tested MCFA and GML inhibit ASFv. GML was more potent than MCFA because it worked at a lower concentration and inhibited ASFv due to direct virucidal activity along with one or more other antiviral mechanisms. Dose-dependent feed experiments further showed that sufficiently high GML doses can significantly reduce ASFv infectivity in feed in a linear manner in periods as short as 30 min, as determined by infectious viral titer measurements. Enzyme-linked immunosorbent assay (ELISA) experiments revealed that GML treatment also hinders antibody recognition of the membrane-associated ASFv p72 structural protein, which likely relates to protein conformational changes arising from viral membrane disruption. Conclusion Together, the findings in this study indicate that MCFA and GML inhibit ASFv in liquid conditions and that GML is also able to reduce ASFv infectivity in feed, which may help to curb disease transmission.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据