4.6 Article

RNA Secondary Structures with Limited Base Pair Span: Exact Backtracking and an Application

期刊

GENES
卷 12, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/genes12010014

关键词

RNA secondary structure prediction; scanning algorithm; hyper-stable RNA elements

资金

  1. German Federal Ministry for Education and Research [BMBF 031A538B]

向作者/读者索取更多资源

The accuracy of RNA secondary structure prediction is affected by the span of base pairs, and algorithms can be specialized to optimize memory usage, but this may sacrifice finding the globally optimal structure. An efficient backtracking algorithm has been integrated into the ViennaRNA package for reconstructing the globally optimal structure, while constraining the z-scores can help identify hyper-stable structural elements in genomic sequences.
The accuracy of RNA secondary structure prediction decreases with the span of a base pair, i.e., the number of nucleotides that it encloses. The dynamic programming algorithms for RNA folding can be easily specialized in order to consider only base pairs with a limited span L, reducing the memory requirements to O(nL), and further to O(n) by interleaving backtracking. However, the latter is an approximation that precludes the retrieval of the globally optimal structure. So far, the ViennaRNA package therefore does not provide a tool for computing optimal, span-restricted minimum energy structure. Here, we report on an efficient backtracking algorithm that reconstructs the globally optimal structure from the locally optimal fragments that are produced by the interleaved backtracking implemented in RNALfold. An implementation is integrated into the ViennaRNA package. The forward and the backtracking recursions of RNALfold are both easily constrained to structural components with a sufficiently negative z-scores. This provides a convenient method in order to identify hyper-stable structural elements. A screen of the C. elegans genome shows that such features are more abundant in real genomic sequences when compared to a di-nucleotide shuffled background model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据