4.6 Article

Analysis of Whole Transcriptome RNA-seq Data Reveals Many Alternative Splicing Events in Soybean Roots under Drought Stress Conditions

期刊

GENES
卷 11, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/genes11121520

关键词

soybean; root; alternative splicing; drought response; transcriptome

资金

  1. Key R&D project of Jiangsu Province [BE2019376]
  2. National Natural Science Foundation of China [31871540]
  3. Natural Science Foundation of Jiangsu Province [BK20191438]
  4. Jiangsu Agriculture Science and Technology Innovation Fund [CX(20)2007]
  5. Joint International Research Laboratory of Agriculture and Agri-Product Safety
  6. Ministry of Education of China, Yangzhou University [JILAR-KF202005]
  7. Graduate Practice Innovation Program of Yangzhou University [XSJCX19_096]

向作者/读者索取更多资源

Alternative splicing (AS) is a common post-transcriptional regulatory mechanism that modulates gene expression to increase proteome diversity. Increasing evidence indicates that AS plays an important role in regulating plant stress responses. However, the mechanism by which AS coordinates with transcriptional regulation to regulate drought responses in soybean remains poorly understood. In this study, we performed a genome-wide analysis of AS events in soybean (Glycine max) roots grown under various drought conditions using the high-throughput RNA-sequencing method, identifying 385, 989, 1429, and 465 AS events that were significantly differentially spliced under very mild drought stress, mild drought stress, severe drought stress, and recovery after severe drought conditions, respectively. Among them, alternative 3 ' splice sites and skipped exons were the major types of AS. Overall, 2120 genes that experienced significant AS regulation were identified from these drought-treated root samples. Gene Ontology term analysis indicated that the AS regulation of binding activity has vital roles in the drought response of soybean root. Notably, the genes encoding splicing regulatory factors in the spliceosome pathway and mRNA surveillance pathway were enriched according to the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Splicing regulatory factor-related genes in soybean root also responded to drought stress and were alternatively spliced under drought conditions. Taken together, our data suggest that drought-responsive AS acts as a direct or indirect mode to regulate drought response of soybean roots. With further in-depth research of the function and mechanism of AS in the process of abiotic stress, these results will provide a new strategy for enhancing stress tolerance of plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据