4.6 Article

Featureless adaptive optimization accelerates functional electronic materials design

期刊

APPLIED PHYSICS REVIEWS
卷 7, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/5.0018811

关键词

-

资金

  1. National Science Foundation (NSF) [DMR-1729303, DMR-1729743]
  2. Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy [DE-AR0001209]
  3. NSF [ACI-1548562]

向作者/读者索取更多资源

Electronic materials that exhibit phase transitions between metastable states (e.g., metal-insulator transition materials with abrupt electrical resistivity transformations) are challenging to decode. For these materials, conventional machine learning methods display limited predictive capability due to data scarcity and the absence of features that impede model training. In this article, we demonstrate a discovery strategy based on multi-objective Bayesian optimization to directly circumvent these bottlenecks by utilizing latent variable Gaussian processes combined with high-fidelity electronic structure calculations for validation in the chalcogenide lacunar spinel family. We directly and simultaneously learn phase stability and bandgap tunability from chemical composition alone to efficiently discover all superior compositions on the design Pareto front. Previously unidentified electronic transitions also emerge from our featureless adaptive optimization engine. Our methodology readily generalizes to optimization of multiple properties, enabling co-design of complex multifunctional materials, especially where prior data is sparse.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据