4.6 Article

An Experimental Investigation on Tribological Behaviour of Tire-Derived Pyrolysis Oil Blended with Biodiesel Fuel

期刊

SUSTAINABILITY
卷 12, 期 23, 页码 -

出版社

MDPI
DOI: 10.3390/su12239975

关键词

renewable; tire pyrolysis oil; sustainable fuels; tribology; four-ball tester and biodiesel

资金

  1. Ministry of Higher Education (MOHE) of Malaysia under Fundamental Research Grant Scheme (FRGS) [203.PMEKANIK.6071444]
  2. Universiti Sains Malaysia

向作者/读者索取更多资源

The demand for alternative fuels has risen in recent years due to the economic and environmental consequences of conventional fuels. In addition to engine characteristics, i.e., performance, combustion, and emission the lubricity of the considered fuel is an important parameter for its selection. This experimental study shows the tribological performance of the tire pyrolysis oil by using the four-ball tester. Waste tire pyrolysis oil was purified by using the distillation process. The experiment was conducted over 300 s at 40, 50, 63, and 80 kg load, 1800 rpm constant speed, and 27 degrees C temperature of all fuels on the ASTM D2266 standard. The tribological performance of the tire pyrolysis oil was compared with the BT10 (biodiesel 90%-tire pyrolysis oil 10%) and BT20 (biodiesel 80%-tire pyrolysis oil 20%) and biodiesel. The optical microscope is used to measure the wear scar diameter and then it is examined through a scanning electron microscope. In terms of greater load-carrying capacity, tire pyrolysis oil shows better anti-wear behaviour compared to biodiesel fuel. The wear scar diameter of BT10, BT20, and tire pyrolysis oil was 23.99%, 8.37%, and 32.62%, respectively, lower than the biodiesel fuel at 80 kg load. The SEM micrographs revealed that tire pyrolysis oil and BT10 displayed lower wear as compared to counterparts. Finally, it is concluded that BT10 is the most suitable fuel in terms of tribological performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据